Commuting Homotopy Limits and Smash Products

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting Homotopy Limits and Smash Products

In general the processes of taking a homotopy inverse limit of a diagram of spectra and smashing spectra with a fixed space do not commute. In this paper we investigate under what additional assumptions these two processes do commute. In fact we deal with an equivariant generalization that involves spectra and smash products over the orbit category of a discrete group. Such a situation naturall...

متن کامل

Smash Products for Secondary Homotopy Groups

We construct a smash product operation on secondary homotopy groups yielding the structure of a lax symmetric monoidal functor. Applications on cup-one products, Toda brackets and Whitehead products are considered.

متن کامل

ar X iv : m at h . A T / 0 30 21 16 v 2 2 4 M ar 2 00 4 COMMUTING HOMOTOPY LIMITS AND SMASH PRODUCTS

In general the processes of taking a homotopy inverse limit of a diagram of spectra and smashing spectra with a fixed space do not commute. In this paper we investigate under what additional assumptions these two processes do commute. In fact we deal with an equivariant generalization that involves spectra and smash products over the orbit category of a discrete group. Such a situation naturall...

متن کامل

Operadic Tensor Products and Smash Products

Let k be a commutative ring. E∞ k-algebras are associative and commutative k-algebras up to homotopy, as codified in the action of an E∞ operad; A∞ k-algebras are obtained by ignoring permutations. Using a particularly well-behaved E∞ algebra, we explain an associative and commutative operadic tensor product that effectively hides the operad: an A∞ algebra or E∞ algebra A is defined in terms of...

متن کامل

Fe b 20 09 PRODUCTS , HOMOTOPY LIMITS AND APPLICATIONS

In this note, we discuss the derived functors of infinite products and homotopy limits. QC(X), the category of quasi-coherent sheaves on a Deligne-Mumford stack X , usually has the property that the derived functors of product vanish after a finite stage. We use this fact to study the convergence of certain homotopy limits and apply it compare the derived category of QC(X) with certain other cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: K-Theory

سال: 2003

ISSN: 1573-0514,0920-3036

DOI: 10.1023/b:kthe.0000018387.87156.c4